Monday, December 20, 2010

"The Multiple"

More from Steven Johnson's Where Good Ideas Come From:
A brilliant idea occurs to a scientist or inventor somewhere in the world, and he goes public with his remarkable finding, only to discover that three other minds had independently come up with the same idea in the past year. Sunspots were simultaneously discovered in 1611 by four scientists living in four different countries. The first electrical battery was invented separately by Dean Von Kleist and Cuneus of Leyden in 1745 and 1746. Joseph Priestley and Carl Wilhelm Scheele independently isolated oxygen between 1772 and 1774. The law of the conservation of energy was formulated separately four times in the late 1840s. The evolutionary importance of genetic mutation was proposed by S. Korschinsky in 1899 and then by Hugo de Vries in 1901, while the impact of X-rays on mutation rates was independently uncovered by two scholars in 1927. The telephone, telegraph, steam engine, photograph vacuum tube, radio—just about every essential technological advance of modern life has a multiple lurking somewhere in its origin story.
In the early 1920s, two Columbia University scholars named William Ogburn and Dorothy Thomas decided to track down as many multiples as they could find, eventually publishing their survey in an influential essay with the delightful title “Are Inventions Inevitable?” Ogburn and Thomas found 148 instances of independent innovation, most them occurring within the same decade. Reading the list now, one is struck not just by the sheer number of cases, but how indistinguishable the list is from an unfiltered history of big ideas. Multiples have been invoked to support hazy theories about the “zeitgeist,” but they have a much more grounded explanation. Good ideas are not conjured out of thin air; they are built out of a collection of existing parts, the composition of which expands (and, occasionally, contracts) over time. Some of those parts are conceptual: ways of solving problems, or new definitions of what constitutes a problem in the first place. Some of them are, literally, mechanical parts. To go looking for oxygen, Priestley and Scheele needed the conceptual framework that the air was itself something worth studying and that it was made up of distinct gases; neither of these ideas became widely accepted until the second half of the eighteenth century. But they also needed the advanced scales that enabled them to measure the minuscule changes in weight triggered by oxidation, technology that was itself only a few decades old in 1774. When those parts became available, the discovery of oxygen entered the realm of the adjacent possible. Isolating oxygen was, as the saying goes, “in the air,” but only because a specific set of prior discoveries and inventions had made that experiment thinkable.
I wrote a little bit about this last year in this post, albeit from a different perspective.

No comments:

Post a Comment